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Abstract 

 Human listeners can quickly and easily recognize different sound sources (objects and 

events) in their environment. Understanding how this impressive ability is accomplished can 

improve signal processing and machine intelligence applications along with assistive listening 

technologies. However, it is not clear how the brain represents the many sounds that humans can 

recognize (such as speech and music) at the level of individual sources, categories and acoustic 

features. To examine the cortical organization of these representations, we used patterns of fMRI 

responses to decode 1) four individual speakers and instruments from one another (separately, 

within each category), 2) the superordinate category labels associated with each stimulus (speech 

or instrument), and 3) a set of simple synthesized sounds that could be differentiated entirely on 

their acoustic features. Data were collected using an interleaved silent steady state sequence to 

increase the temporal signal-to-noise ratio, and mitigate issues with auditory stimulus 

presentation in fMRI. Largely separable clusters of voxels in the temporal lobes supported the 

decoding of individual speakers and instruments from other stimuli in the same category. 

Decoding the superordinate category of each sound was more accurate and involved a larger 

portion of the temporal lobes. However, these clusters all overlapped with areas that could 

decode simple, acoustically separable stimuli. Thus, individual sound sources from different 

sound categories are represented in separate regions of the temporal lobes that are situated within 

regions implicated in more general acoustic processes. These results bridge an important gap in 

our understanding of cortical representations of sounds and their acoustics. 

Keywords: fMRI, Auditory Object, Auditory Perception, Speaker Identification, Speech, Timbre, 
Music, MVPA 

 

  



1. Introduction 

 The identification of sound sources in the environment is a crucial function of auditory 

perception that is central to auditory scene analysis (Bizley and Cohen, 2013; Bregman, 1990), 

speech perception (Creel and Bregman, 2011) and music perception (McAdams and Giordano, 

2009). In everyday life, listeners identify sounds quickly and easily. The ease with which one can 

accomplish such a task belies a difficult computational problem that the human auditory system 

must solve: how does the brain represent the multitude of sound sources a listener can identify? 

A better understanding of the neural processes supporting listeners’ efficient object identification 

abilities could lead to improved signal processing and machine intelligence algorithms which can 

translate into better assistive therapies and devices to help relieve the difficulty that hearing loss 

poses for an aging population.  

One way the human auditory system could represent behaviorally relevant sound sources, 

such as conspecific voices or musical instruments is through separate neural resources attuned to 

a particular class of sounds for efficient read-out by other cognitive or neural operations (e.g., 

Norman-Haignere et al., 2015). Alternatively, all types of sound sources might be represented 

via the same neural substrates (e.g., Zatorre et al., 2004), with little or no category-specific 

operations until later levels of analysis. However, previous work has primarily examined either 

individual sources within a single category (Bonte et al., 2014; Formisano et al., 2008; Hjortkjær 

et al., 2017), or broad category-level differences between large groups of sounds (Lee et al., 

2015; Staeren et al., 2009). As a consequence, it remains unclear whether individual auditory 

objects or events from different categories are represented using the same or different neural 

substrates.   



Functional magnetic resonance imaging (fMRI) studies have implicated the anterior 

superior temporal lobes in the processing of speaker identity (Belin and Zatorre, 2003; 

Chandrasekaran et al., 2011; Von Kriegstein et al., 2003). Furthermore, studies using 

multivariate pattern analysis (MVPA) have shown that patterns of fMRI activation in the 

superior temporal lobes can distinguish the individual speaker that a listener has just heard 

(Bonte et al., 2014; Formisano et al., 2008). In this way, MVPA is a useful tool for studying 

object perception because it permits the localization of neural information relevant to a particular 

stimulus or condition (Kriegeskorte et al., 2006). Additionally, MVPA can be more sensitive 

than univariate techniques because it takes advantage of the entire pattern of (often subtle) 

activation within a region (Haynes and Rees, 2006; Tong and Pratte, 2012, but see Akama et al., 

2012; Jimura and Poldrack, 2012).  

 The superior temporal lobes and planum temporale have also been implicated in 

processing musical sound sources (Alluri et al., 2012; Menon et al., 2002; Halpern et al., 2004), 

which (like speakers) are particularly salient to human listeners. The musical quality that refers 

to different sound sources (instruments) is known as timbre (McAdams & Giordano, 2009). 

Similarly, studies of musical sounds in relation to diverse sets of speech and environmental 

sounds have identified music-specific responses in the anterior temporal lobes and planum polare 

(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010; Norman-Haignere et al., 2015; 

review: Ogg and Slevc, in press). However, such diverse stimulus sets necessarily involve 

greater acoustic variability, which can be represented in patterns of activation (Allen et al., 2017; 

Giordano et al., 2012) that a classifier could exploit. Therefore, when using diverse stimulus sets, 

steps must be taken to account for these acoustic processes either by controlling the features of 

the stimuli themselves (Lee et al., 2015; Staeren et al., 2009), or by incorporating the acoustic 



variability into the analyses (Hjortkjær et al., 2017; Giordano et al., 2014). Additionally, these 

studies involving musical timbre were primarily based on univariate activation. MVPA would 

permit the examination of individual object (Hjortkjær et al., 2017) and category (Lee et al., 

2015; Staeren et al., 2009) representations.  

In sum, results from both activation and decoding studies suggest a common reliance on 

the anterior temporal lobes as well as planum temporale for the processing of various categories 

of auditory objects and events. However, this work has involved different levels of granularity 

regarding the comparisons, sound categories, and acoustic features examined. Thus, the present 

study used a searchlight decoding approach to directly compare the decoding of natural 

recordings of individual auditory objects or events from different categories of sound that are 

highly relevant for human listeners: speakers and instruments. Our stimuli controlled for many 

low-level acoustic parameters, but were allowed to naturally vary along dimensions known to 

facilitate robust and ecologically valid object recognition. Additionally, we obtained behavioral 

identification measures during an initial familiarization phase that ensured participants could 

accurately perceive and differentiate these individual sound sources, which might also provide 

context for the neural results. Finally, our use of an interleaved silent steady state acquisition 

(ISSS) MRI sequence (Schwarzbauer et al., 2006) allowed for optimal presentation of the sound 

stimuli within gaps between the loud scanner volume acquisition noise (a persistent issue with 

auditory studies in MRI; Peelle, 2014), while maximizing the temporal signal-to-noise ratio in 

our data by averaging over multiple scans (Murphy et al., 2007).  

If the perception of individual instruments can be decoded from patterns of fMRI 

activation similarly to individual speakers (Bonte et al., 2014; Formisano et al., 2008), it would 

suggest that the brain represents individual auditory objects (instruments or speakers) in a 



general manner (based on common neural substrates). Alternatively, if they are decoded in 

different areas of the brain, it would suggest there are separate neural resources devoted to 

individual sound sources from different categories. To account for how our classification results 

might reflect neural representations of the low-level acoustic features of these sounds, we also 

identified regions associated with basic auditory processes using simple synthesized auditory 

stimuli. This approach allowed us to examine object, category and acoustic level sound 

representations in the brain. 

 

2. Materials and Methods 

2.1 Participants 

 We recruited 18 participants (9 female, age M = 22.7, SD = 3.8) from the University of 

Maryland community. All participants were right handed, fluent English speakers, with normal 

hearing, and no neurological disorders based on self report. The presence or absence of musical 

training was not exclusionary, and most participants had some degree of musical training (M = 

5.1 years, SD = 3.6), which is typical of a university-based participant population (Corrigall et 

al., 2013). Participants gave informed consent to participate and were compensated monetarily. 

The procedures in this study were approved by the University of Maryland Institutional Review 

Board. 

 

2.2 Stimuli  

 2.2.1 Main Study: We presented participants with eight different sound sources. Four of 

these sources were different speakers of American English (vowels spoken by two males and two 

females) who were not known to the participants prior to study participation. The other four 



sound sources were different musical instruments (bass clarinet, bowed cello, marimba, and 

trombone) chosen to broadly represent the different families of orchestral instruments. We used 

three different tokens for each sound source (i.e., each speaker or instrument) which required the 

classifier to generalize across unique tokens to decode a given sound source. Example 

spectrograms are plotted in Figure 1, along with a schematic of the experimental design.  

 Note that our focus in constructing this stimulus set was not to comprehensively control 

for all the low-level acoustic features that might differ between or among music and speech 

sound sources. Instead, our view was that natural and important acoustic differences exist in 

terms of spectral or temporal envelopes (among instrument timbres) and fundamental frequency 

(among speakers) that support object recognition in the auditory system. These stimuli were 

selected to represent such qualities and to therefore facilitate robust and ecologically valid object 

recognition for the listener. 

For each of the four speakers, we created tokens that consisted of three different vowels 

which were extracted from longer consonant-vowel-consonant utterances. Vowels (rather than 

consonants) were used because they are particularly useful for listeners when identifying 

different speakers (Owren and Cardillo, 2006) and for decoding speaker-related information 

from neural responses (Formisano et al., 2008; Khalighinejad et al., 2017). Speakers read a 

randomized list of utterances that crossed the consonants /h/, /b/, and /g/ with the vowels /ɑ/, /i/ 

and /u/ and ended with /d/ (resulting in the utterance “heed,” for example). From these, one 

instance of each vowel (/ɑ/, /i/ and /u/) was extracted for each speaker. Speakers were instructed 

to keep the pitch of their voices as consistent as possible but to otherwise speak normally. 

Recording equipment and conditions for the speech stimuli were similar to previous work (Ogg 

et al., 2017).  



For each of the four instruments, we used tokens consisting of three different notes 

(obtained from University of Iowa Musical Instrument Samples Database; 1997), which served 

two methodological functions. First, as with the different speakers’ vowels, the acoustic 

variability from the different notes required the classifier to generalize across neural responses 

associated with a particular stimulus token, resulting in a stronger test of sound source decoding. 

Second, this allowed us to match the fundamental frequencies of the instruments to the speech 

utterances, which could otherwise provide a trivial cue that the classifier might use. To 

accomplish this, we calculated the median fundamental frequency of each speech token using the 

YIN algorithm (de Cheveigné and Kawahara, 2002) and identified the closest musical note. We 

then randomly assigned these notes (3 x A♭2, 1 x B♭2, 2 x C3, 3 x A♭3, 2 x B3, 1 x C4; which 

correspond to approximately 103.83, 116.54, 130.81, 207.65, 246.94, and 261.63 Hz, 

respectively) to the musical instruments. The lower fundamental frequencies of the male 

speakers required the use of lower register musical instruments. Note that assignment was 

constrained such that no instrument played the same note twice and each instrument played at 

least one note corresponding to a male and a female utterance.  

Using these different pitches means that the organization of fundamental frequency is 

preserved among the stimuli where this cue is a naturally important dimension, such as for 

distinguishing among speakers. At the same time this control obviates fundamental frequency as 

a useful cue in other comparisons where this feature varies more arbitrary with respect to 

individual sound sources, such as for distinguishing instruments, or distinguishing between 

instruments and speakers. In the former case, listeners and the classifier can still use fundamental 

frequency as a cue to discriminate stimuli, whereas in the latter cases it must be ignored. 



Thus, the eight sound sources we aimed to decode were conveyed to the participants via 

24 unique stimuli: 12 instrument tokens comprising 3 notes from 4 instruments, and 12 speech 

tokens comprising 3 vowels from 4 speakers. We also included a cat vocalization sound as a 

catch trial to ensure that participants remained attentive during the scan.  

Each stimulus was edited to its most identifiable 230 ms section. We selected this 

duration for all stimuli to prevent duration from being a distinguishable cue between stimuli and 

because this was the longest duration of the vowels that minimized any notable coarticulation 

from the adjacent consonants. Vowels were manually extracted from the speech utterances, then 

visually and aurally inspected to confirm they contained consistent periodic waveforms and 

minimal change due to coarticulation (Figure 1). Because sound onset dynamics are integral to 

the perception of musical timbre (McAdams and Giordano, 2009), instrument stimuli (and the 

cat stimulus) were edited to a 230 ms window beginning at each token’s onset, defined here as 5 

ms prior to when the sound first exceeded 10% of its maximum absolute amplitude. We then 

applied 20 ms onset and offset cosine ramps, and RMS level normalization to all tokens. Finally, 

stimuli were filtered to achieve a flat frequency response (+/– 2dB between) between 50 Hz and 

6000 Hz, where the frequency response of the Sensimetrics playback system (Malden, MA) and 

Etymotic 3A insert earphones (Etymotic Research, Elk Grove Village, Illinois) falls off. Stimuli 

were played back in the scanner at approximately 72 dBA SPL, although the level was allowed 

to be increased per participant request. 

2.2.2 Auditory Localizer: We also presented participants with simple, synthesized stimuli 

that have been used in previous studies to identify early auditory processes (Figure 2). These 

were non-overlapping patterns of sinetones centered around 200, 400, 800, 1600, 3200, and 6400 

Hz that resembled “auditory checkerboards” (as in Humphries et al., 2010). Each checkerboard 



consisted of fifteen 80 ms bursts of two (at 0.9 or 1.11 times the center frequency) or three (at 

0.83, 1 or 1.23 times the center frequency) tones that were not harmonically related with 20 ms 

onset and offset cosine ramps presented at a rate of 10 Hz. The order of the two or three tone 

bursts within each trial was randomized for a total of five unique patterns within each frequency 

range. We also presented participants with five different instances of 8 Hz amplitude modulated 

gaussian white noise (similar to Okada et al., 2010). Each localizer stimulus lasted 1.5 seconds 

and was RMS-normalized to the same level as the speech and instrument stimuli and the same 

filters were applied. The checkerboard and noise stimuli were presented together in a randomized 

order within each localizer block (thus, the noise stimuli and each checker board frequency range 

made up 1/7th of the localizer stimuli). 

 



Figure 1. Schematic of the experimental stimuli and design. A: picture and spectrogram 

depictions of the sound sources within each category (left). The vowels /i/ and /u/ from each 

speaker were also presented (not pictured), as well as two other notes for each instrument for a 

total of three vowels from each of four speakers and three notes from each of four instruments. 

The sound sources (speakers and instruments) were each decoded from one another via a series 

of searchlights whose center voxels iterated through all the voxel positions in the brain. The 

speaker and instrument decoding results were then compared with one another to determine 

which voxels or searchlights, if any, were able to significantly decode stimuli in both sound 

categories. Colored circles are illustrative and do not depict actual data or searchlights. B: 
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diagram of stimulus presentation and TR acquisitions in the interleaved silent steady state 

scanning sequence for a given trial. 

 

 

 

Figure 2. Examples of A: the auditory checkerboard and B: amplitude modulated noise stimuli 

used in the auditory localizer. Tone frequencies are plotted on a linear frequency axis: at 0.9 or 

1.11 times the center frequency or at 0.83, 1 or 1.23 times the center frequency. The center 

frequencies of each checkerboard are indicated above each plot. Spectrogram window and 

overlap parameters were adjusted across plots in A to more clearly indicate the separation of the 

tones in different frequency ranges. 

 

 

2.3 Familiarization and Screening 
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Participants completed a familiarization and screening session no more than eight days 

prior to the MRI session to introduce them to the stimuli and to ensure they could accurately 

identify the speaker and instrument sound sources. Accurate identification would 1) Confirm a 

comparable level of difficulty in perceiving these sound sources; 2) Suggest that participants’ 

auditory responses to the stimuli were distinct from one another at some level of processing 

which the classifier might potentially discern and; 3) Provide a larger context for our 

interpretation of the decoding results. In the familiarization and screening phase, participants first 

freely listened to each of the 25 stimulus sound files (24 critical tokens plus the cat vocalization) 

as many times as they liked. Next, participants completed six blocks of trials in the 

familiarization and screening paradigm (administered via PsychoPy, version 1.83.4; Peirce, 

2007). Each trial presented the participant with three repetitions of a single stimulus, with 700 

ms inter-stimulus-intervals. In each block, stimuli were presented in a random order.  

In the first block of six blocks of trials, participants listened passively to the stimuli while 

the name and a picture of each sound source was displayed on screen. In the second block of 

trials, stimuli were presented one at a time and participants were required to indicate the sound 

source via button press (closed set with nine response options on screen: each of the four 

instruments and speakers plus the cat). In the second block, participants were given feedback to 

indicate if they were correct or, if not, to indicate the correct sound source. The third block of 

trials was designated as the test block and was identical to the second block except there was no 

feedback.  

The final three blocks of trials were identical to the first three, but instead of the original 

sound files, participants were presented with recordings of each stimulus made from the earpiece 

of the MRI scanner sound delivery system (while the scanner was not running). This was done to 



ensure that participants could identify the stimuli despite any changes that might be imparted by 

the scanner playback apparatus. Recordings of the stimuli were made via a Larson Davis (Larson 

Davis, Depew, NY) 2cc coupler and 1/2in condenser microphone, 824S/PRM902 preamplifier 

and sound level meter, and an SD702 digital recorder (Sound Devices, Reedsburg, WI). 

 Screening performance was assessed using the participant’s accuracy on the sixth block 

(i.e., second testing block, based on recordings from the scanner’s playback system). Participants 

were required to achieve a criterion of at least 22 out of 25 (88%) correct in order to proceed to 

the scan. If a participant did not achieve this high accuracy on their first try, they were permitted 

to listen back to the stimuli at their own pace or repeat any portion of the screening before trying 

the critical testing block again. Three participants required a second try on the testing block and 

one required a third, two additional participants did not meet this criterion and thus did not 

undergo a scan.  

 

2.4 Data Acquisition 

 Scanning was performed on a Siemens 3T MAGNETOM Tim Trio MRI (Siemens AG, 

Munich, Germany) with a 32-channel head coil. A high resolution, T1-weighted structural scan 

was acquired via an MPRAGE sequence (192 contiguous sagittal slices; 0.9×0.9×0.9 mm voxel 

size; TR = 1900 ms; TE = 2.32 ms; flip angle = 9°). Functional scanning was then performed via 

an interleaved silent steady state acquisition sequence (ISSS; Schwarzbauer et al., 2006). 

Compared to continuous or fully sparse sampling acquisition approaches, this sequence 

maximizes the temporal signal-to-noise ratio by averaging the BOLD response across multiple 

functional volumes (Murphy et al., 2007), while still providing a quiet period during which the 

stimuli could be played without interference from the loud acquisition sequence (Peelle, 2014). 



Thus, each trial began with a 2-second epoch without the scanner acquisition noise, in which 

pulses maintain the magnetic field and allow for stimulus presentation in relatively quiet 

conditions. This was followed by the acquisition of three functional volumes (voxel size = 

3x3x3-mm; 32 slices; TR = 2000 ms; TE = 30 ms; flip angle = 78 degrees; gap = .75-mm) also 

lasting 2 seconds each for a total trial length of 8 seconds. On screen instructions, participant 

responses, stimulus presentation and timing were controlled via a PC running PsychoPy (version 

1.83.4; Peirce, 2007). Visual instructions were presented on a screen at the back of the bore 

projected on a head-coil-mounted mirror. 

After the structural scan, participants underwent six runs of 60 trials each in the main 

study (for a total of 180 volumes per run). The participant’s task in the main study was to push a 

button every time they heard the cat vocalization stimulus (there was no task in the localizer 

runs). During the silent epoch (white portion of Figure 1B), a fixation cross was displayed and a 

given 230 ms token was presented three times with a 405 ms ISI and a 250 ms silent buffer on 

either end of the two second presentation window. This was followed by a visual prompt to press 

the button if that trial contained the cat sound, which remained onscreen for the rest of the trial’s 

six second duration. The visual prompt was the same on every trial. Catch trials where the cat 

stimulus was presented were interspersed with the speech and instrument tokens and were also 

presented three times per trial (silent epoch) in the same manner as the other tokens (Figure 1B). 

Each of the unique 24 stimuli was presented twice per run for a total of six instances of each 

speaker and instrument sound source. Each run also contained eight baseline trials (one at the 

beginning and end of each run) in which no auditory stimulus was presented, as well as four 

catch (cat) trials. Within each run, stimuli were presented in pseudorandomized order, 



constrained such that no speaker or instrument was presented twice in a row. The catch trials and 

responses were excluded from the decoding analyses.  

After the six runs of the main study, participants underwent three runs of the auditory 

localizer. The functional parameters and protocol for the auditory localizer were the same as 

above except for the following differences: Five exemplars of each of the seven synthesized 

stimuli (amplitude modulated noise, or checkerboards centered on each of the six frequencies) 

were played per run along with seven baseline trials in which no stimulus was presented (one at 

the beginning and end of the run) for a total of 42 trials per run (126 volumes per run). Stimuli 

were again pseudo randomized such that no frequency range (or noise stimulus) was presented 

twice in a row. Localizer stimuli were played continuously for 1.5 seconds in the middle of the 

two-second silent epoch. Participants were instructed to listen carefully to the stimuli and were 

not required to perform any task during the localizer. 

 

2.5 Preprocessing 

 All preprocessing steps were carried out in AFNI version 18.0.18 (Cox, 1996). The 

functional volumes were first re-aligned to the first volume of the participant’s first run, co-

registered with the participant’s own structural image, and spatially normalized using affine 

transformation to a standard MNI template. During the co-registration step, six motion 

parameters (3 translation and 3 rotation) and their derivatives were recorded for inclusion in the 

regression analyses. All further analyses used the final two of the three functional ISSS volumes 

collected after stimulus presentation. This was done for two primary reasons: 1) Given that the 

canonical hemodynamic response peaks 4 to 6 seconds after a stimulus, we focused our analysis 

on the final two of the three functional volumes collected after stimulus presentation; and 2) 



Inspection of the data revealed that the steady-state longitudinal magnetization had been 

insufficiently maintained during the silent epoch of the ISSS sequence, resulting in a T1-signal 

decay for only the first of the three acquisitions (see Supplementary Figure 1). To focus on the 

second and third volumes of interest, we removed the first ISSS volume from the time series and 

concatenated the remaining volumes for decoding and activation analyses. In addition, we also 

removed motion parameters and derivatives that corresponded to the removed functional 

volumes. The resulting BOLD timeseries was spatially-normalized and then entered into the 

following preprocessing steps for decoding and activation analyses, respectively. 

For the decoding analyses (both the main study and localizer), motion parameters and 

their derivatives (for the second and third volumes), along with terms for linear and quadratic 

low-frequency drift for each run were removed using a linear regression. The residuals were then 

masked using an individually-defined mask to include only voxels within the brain. The 

somewhat small field of view employed along with the angle that captured the temporal lobes 

meant that in most cases we could not capture a participant’s entire cortex. For these participants, 

we prioritized capturing the temporal lobes which reduced coverage for the dorsal and anterior-

most portions of the parietal and frontal lobes, respectively. We report results only for voxels 

where signal was present in all participants. Each voxel’s response was then averaged across the 

two scans for each trial and these trial-level voxel responses were used as feature vectors for 

training and testing the classifier.  

For univariate activation analysis, re-alignment, co-registration, and spatial normalization 

was performed using identical steps as the above decoding preprocessing. We then normalized 

the BOLD signal to a mean of 100 using the voxelwise mean intensity, and spatially smoothed 

voxels within individually-defined brain masks using a 5-mm FWHM gaussian kernel. The first-



level general linear model (GLM) analysis used a finite impulse response (FIR) model, in which 

we created a design matrix that included impulse response regressors for the two volumes that 

followed each sound condition (speech or instrument) and a nuisance impulse regressor for the 

catch-trials. In addition, we included the de-meaned motion parameters and their derivatives (for 

the second and third volumes on each trial) as nuisance regressors. A post hoc speech > 

instrument contrast was performed, which was then submitted to a second-level analyses across 

participants. Group analysis was performed using a mixed-effect multilevel model (3dMEMA in 

AFNI), which weights effect estimates by their variance (Chen et al., 2012). The results were 

corrected for multiple comparisons using 1000 Monte Carlo simulations to assess statistically 

significant clusters that could arise by chance while also accounting for the spatial 

autocorrelation structure of the data (using 3dClustsim with the ACF option in AFNI; Cox et al., 

2017). 

 

2.6 Stimulus Decoding 

 Classification analyses were performed at the individual participant level with a 

searchlight algorithm implemented in CoSMoMVPA (Oosterhof et al, 2016) in MATLAB 

(2014b, MathWorks, Natick, United States). Separate searchlights were run to decode the 

instrument timbres from one another, the speakers from one another (both 4-way classification, 

chance = 25% separated by subsetting the trials by category; see Figure 1a), and whether a given 

sound was a speech or instrument sound (2-way classification, chance = 50%, no subsetting aside 

from removing baseline and catch trials). To ensure that any potential differences in 

classification performance from the 4-way, within-category analyses were due to better 

representations of the categories themselves rather than simply a greater amount of training data 



(30 training cases per within-category target compared to 120 for between categories), we 

randomly selected a comparable subset of trials per run for each participant before conducting 

the between-category searchlight (thus yielding 30 trials per target: ”instrument” or “speech”, 

constrained such that each speaker or instrument under each category label was present at least 

once per run). 

 Baseline and catch trials were removed from the lists of trials prior to decoding. Each 

searchlight used a linear discriminant classifier with a 3-voxel radius (average size = 113.4 

voxels), such that each voxel in the brain served as the center location of a searchlight. We used 

a 6-fold, leave-one-run-out cross-validation scheme to train and test the classifier. This process, 

resulted in a map of classification accuracies averaged over cross-validation folds.  

 The same procedure was used to decode the auditory localizer conditions. The labels the 

classifier decoded for the localizer were the center frequencies of the checkerboards or “noise.” 

This searchlight analysis was conducted with 3-fold, leave-one-run-out cross-validation using the 

trials in the three localizer runs (compared to the six runs available for the main study), again 

excluding silent baseline trials. We obtained the same pattern of results and conclusions when 

the noise stimulus was excluded from the localizer decoding analysis. 

 Statistical significance for the decoding results was assessed at the group level via 

permutation testing and threshold free cluster enhancement (Smith and Nichols, 2009; Stelzer, 

Chen, and Turner, 2013). For each searchlight analysis, we generated 100 permuted accuracy 

maps for each participant by shuffling the labels of the stimuli for training and testing within 

each run and then repeating the decoding algorithm above. These permuted participant-level 

maps were then included among 10,000 bootstrapped sign permutation testing iterations and 

threshold free cluster enhancement as implemented in CoSMoMVPA (Oosterhof et al., 2016). 



For each searchlight, this yielded z-statistics that we assessed as one-tailed tests against chance 

performance at a criteria of p < 0.05 (z > 1.6449) corrected for multiple comparisons. All results 

are visualized using MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/). 

 

3. Results 

 Participants were able to accurately identify these individual sound sources in a 

behavioral identification task conducted at screening (M identification accuracy = 93%, SD = 

3.6%), indicating that these different sound sources were clearly distinguishable to the 

participants. Moreover, performance on the identification task did not differ between the speech 

and instrument stimuli (paired sample t-test: t(17) = 1.22, p = 0.24; speech M = 95%, SD = 6.5%; 

instrument M = 91%, SD = 8.3%), indicating a comparable level of difficulty for discerning 

among these sets of sound sources. To ensure participants maintained attention in the scanner, 

their task was to push a button every time a trial consisted of a cat vocalization. Participants were 

very accurate on this vigilance task (M accuracy = 96.8%, SD = 8.2%) indicating that they were 

attentive to the sounds throughout the scan. The cat trials were not analyzed further. 

To understand where individual sound sources, sound categories, and basic acoustic 

features were represented in the brain, we first report a series of searchlight decoding analyses 

(in that order). Next, we describe how the decoding of individual sound sources and categories 

might be accounted for by low-level acoustic representations. This is followed by a univariate 

analysis of overall neural activation for the speech and instrument tokens. Finally, we examine 

the potential influence that individual factors might have had on these results such as musical 

training or behavioral identification at screening. 

 



3.1 Mapping Representations of Individual Speakers and Instruments: Within-Category 

Searchlight Analyses 

 We first investigated whether the unique sound sources within each category (speakers or 

instruments) could be decoded from one another, and whether this involved overlapping or 

separate neural substrates among the different categories. Thus, we had participants listen to 

multiple examples of four speakers and four instruments, and then performed a searchlight 

decoding analysis of the stimuli within each category (Figure 3A and Table 1).  

 The instruments that participants heard could be decoded from one another in 428 voxel 

searchlight locations (all corrected p < 0.05) in portions of the bilateral temporal lobes. These 

regions spanned an area posterior to primary auditory cortex that extended anteriorly along 

superior temporal gyrus and to the right inferior frontal gyrus, including Heschl’s gyrus in the 

right, but not the left hemisphere. This pattern was more lateral in the left hemisphere and 

extended more anteriorly in the right hemisphere. In contrast, the individual speakers that 

participants heard could be decoded from one another in a circumscribed cluster of 18 voxel 

searchlight locations (all corrected p < 0.05), all in the left hemisphere near primary auditory 

cortex, encompassing parts of the transverse temporal gyrus and insula. Interestingly, only one 

voxel (searchlight location) was found to be able to significantly decode stimuli from both 

categories, located in the left superior temporal gyrus. Group averaged accuracy rates among the 

voxels in significant clusters were 3.5% (SE = 0.3%) better than chance performance for the 

instrument searchlight, and 4.2% (SE = 0.5%) better than chance performance for the speaker 

searchlight (where chance for both = 25%), although the maximum decoding accuracy that was 

achieved for individual participants was much higher (Figure 3). These results suggest that 

individual timbres and speakers can be decoded from one another using this searchlight method, 



but that this decoding appears to involve largely separable neural resources between speech and 

instrument sounds.  

 

 

Figure 3. Searchlight decoding results. The A: separate within-category (instrument vs. 

instrument and speaker vs. speaker), B: between-category (instrument vs. speech), and C: 

auditory localizer searchlight analyses overlaid onto the same template brain. All clusters were 

significant (p < 0.05) based on 10,000 bootstrapped sign permutation tests against chance (one-

tailed; using 100 null permutation maps for each participant) and threshold free cluster 

enhancement. Within-instrument decoding is depicted in blue, within-speaker decoding is 

depicted in red, overlap between these is depicted in violet, between-category decoding is 

depicted in yellow, and the auditory localizer is depicted in green. Maximum participant level 

accuracy rates in each analysis (minus chance) as well as average participant level accuracy rates 

within the significant group-defined clusters (minus chance) are summarized in the plots on the 

right. 
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3.2 Mapping Representations of Sound Categories: Between-Category Searchlight Analysis for 

Speech vs. Instrument 

 Following up on the previous analysis that examined the classification of individual 

instruments or speakers from one another, we also investigated whether patterns of activation 

associated with each stimulus’ superordinate sound category (speech or instrument) are linearly 

separable from one another. Thus, we ran an additional searchlight analysis where a classifier 

was trained and tested on the category labels “speech” and “instrument” associated with each 

stimulus.  

 These results (Figure 3B, Table 1) revealed significant bilateral decoding extending from 

the posterior parts of left and right superior and middle temporal gyrus to the anterior superior 

temporal gyrus among 1032 voxel searchlight locations (all corrected p < 0.05). Group averaged 

accuracy rates among voxels in these significant clusters were 5.5% (SE = 0.6%) better than 

chance performance (chance = 50%), although again the maximum decoding accuracy that was 

achieved for individual participants was much higher (Figure 3). Between-category decoding 

accuracy was much higher than the within-category decoding accuracy (see Figure 3) and 

involved a more extensive portion of cortex (1032 significant voxels compared to 428 or 18, see 

Table 1), suggesting that the neural representations of these superordinate sound categories were 

more linearly distinguishable than those of the individual stimuli within each category. 

Interestingly, the between-category decoding map implicated voxels that only partially 

overlapped with the two within-category decoding maps: three voxels overlapped with the 

speaker decoding map (16.67% of the speaker voxels) and 174 voxels overlapped with the 

instrument decoding map (40.65% of the instrument voxels). 

 



 

Table 1. Searchlight Decoding Analysis Clusters 

Description Z Voxels (n) MNI Coordinates  
(X, Y, Z) 

Within-Instrument    

L. Superior Temporal Gyrus 2.61 125 –58, –31, 5 

R. Superior Temporal Gyrus 3.43 301 61, –16, 5 

Within-Speech    

L. Transverse Temporal Gyrus 2.05 18 –45, –22, 12 

Within-Category Overlap    

L. Superior Temporal Gyrus  1 –48, –16, 8 

Between-Category    

L. Superior Temporal Gyrus 3.12 460 –61, –13, 6 

R. Superior Temporal Gyrus 3.72 528 58, –12, 2 

Auditory Localizer    

L. Superior Temporal Gyrus (Center) 3.72 1390 –50, –23, 7 

R. Superior Temporal Gyrus (Center) 3.72 1457 55, –19, 6 

Only clusters of at least 10 voxels are displayed with the exception of within-category overlap.  

All clusters were significant (p < 0.05) based on 10,000 bootstrapped sign permutation tests 
against chance (one-tailed; using 100 null permutation maps for each participant) and threshold 
free cluster enhancement. 

Maximum z-value returned by the bootstrap algorithm for 10,000 iterations is 3.72. 

All listed z-values pertain to statistical peaks unless otherwise noted as a center coordinate (in 
the case of large clusters of contiguous maximum z-values).  
 

 

 

 



3.3 The Influence of Low-Level Auditory Features: Auditory Localizer Decoding 

 The within- and between-category searchlight results suggest neural response patterns 

that distinguish different sound sources and categories from one another, but thus far it is not 

entirely clear what underlying neural processes these decoding results reflect. We selected 

portions of the speech and instrument tokens that the literature indicated would be most 

identifiable: the vowels of utterances of speakers (Owren and Cardillo, 2006), and the onsets of 

instrument notes (McAdams and Giordano, 2009). Moreover, we allowed the acoustic features 

that support sound identification within these categories to vary naturally: spectral and temporal 

envelopes among instruments and fundamental frequency among speakers. This could precipitate 

different responses in the regions of auditory cortex responsible for representing these acoustic 

properties, which in turn might have been exploited by the classifier.  

To determine the extent to which our findings thus far might rely on such low-level 

acoustic processing mechanisms, we decoded neural responses to simple synthesized tone 

patterns centered at different frequencies, as well as amplitude modulated noise, all of which 

have been used in previous studies to localize primary auditory functions (Humphries et al., 

2010; Okada et al., 2010). The logic of this approach is that if the classification of speakers or 

instruments in a particular region capitalized on neural representations of low-level acoustic 

feature differences that might exist among these natural sounds, then those same regions should 

also be sensitive to (i.e., represent) the different frequency ranges of the sinetone checkerboards 

and amplitude modulated noise used in the localizer. This was quantified by examining any 

potential overlap between the maps of regions that supported the significant decoding of natural 

sounds and maps of regions that the supported significant decoding of the localizer stimuli. 



 The auditory localizer revealed large clusters of significant decoding in 2847 voxel 

searchlight locations (all corrected p < 0.05) in the temporal lobes centered around primary 

auditory cortex in both hemispheres (Figure 3C). This activation extended from the insula and 

middle temporal gyrus anteriorly along superior temporal gyrus. The group averaged accuracy 

among voxels in these significant clusters was 6.6% (SE = 0.5%) better than chance performance 

(chance = 14.29%) although again individual maximum decoding accuracies among participants 

was much higher (Figure 3).  

 The regions identified in the within-category searchlights were contained almost entirely 

within the set of voxels that significantly decoded the localizer stimuli (Figure 4). The speaker 

decoding map overlapped 100% with the localizer map, while the instrument decoding map 

overlapped 93.2% with the localizer map. This suggests that the within-category decoding was 

based largely on neural responses that pertained to the processing of low-level acoustic 

differences among these stimuli (but see Peretz, Vuvan, Lagrois, & Armony, 2015 for a 

discussion of the difficulty of interpreting overlap in fMRI). The only exception to this was a 

small cluster of 10 voxels in the right inferior frontal gyrus that was involved in decoding 

instruments but not involved in the decoding the localizer stimuli (MNI coordinate of cluster 

center: x = 59, y = 16, z = 6). Interestingly, the between-category searchlight, which identified 

significant voxels in the posterior and anterior temporal lobes, only overlapped 71% with the 

auditory localizer searchlight. This suggests that some other processes were responsible for 

between-category decoding in addition to low-level acoustic features. 

Thus, the different decoding analyses were successful overall, however accuracy rates 

varied across tests (Figure 3). To quantify these differences, we ran a repeated measures 

ANOVA on the (logit transformed) maximum accuracy rates among participants in each 



searchlight analysis. This revealed that the maximum decoding rates varied significantly across 

decoding analyses (F(3,51) = 67.61, p < 0.001, ηρ2 = 0.80). Bonferroni-corrected post-hoc t-tests 

revealed that maximum accuracy rates for each test significantly differed from one another (all 

corrected p < 0.001) except for between the two within-category analyses and between the 

localizer analysis and the between-category analysis. This suggests that the neural 

representations of these different categories and different acoustic features were more reliably 

distinguishable than the neural representations of the individual stimuli within each category. 

Similar conclusions were reached based on ANOVAs of average participant-level accuracy rates 

within the significant group-defined clusters (Figure 3). 

 

 

Figure 4. Overlap between the results of the auditory localizer searchlight analysis and A: the 

within category or B: between category decoding analyses overlaid onto a template brain. Colors 

denote the decoding analysis that the maps correspond to. 

                                                                                                Instrument Speaker Overlap with 
LocalizerLocalizer

A

B

                        Between-Category



3.4 Univariate Activation for Speech and Instrument Stimuli 

 Our study design also allowed us to examine any potential differences in activation 

(rather than classification) between speech and instrument sounds. Thus, we compared the 

regions activated by the speech and instrument stimuli (averaging over the responses to stimuli 

within each category) in a subtractive analysis of univariate fMRI activation between these two 

categories (Figure 5, Table 2). This revealed a region that exhibited a stronger response to 

instrument stimuli around primary auditory cortex in the right hemisphere, along with two 

bilateral regions that expressed a preference for the speech stimuli located more ventrally and 

laterally in the temporal lobes compared to the instrument sensitive region (t-tests on beta 

estimates, uncorrected p < 0.005, with a 22 voxel cluster threshold, FWE p < .05, adjusted for 

autocorrelation among neighboring voxels).  

 

 
Figure 5. Results of the subtractive, univariate analysis of speech and instrument responses 

(speech > instrument). Voxels that exhibited stronger responses to speech sounds are plotted in 

red (positive t-values) and voxels that exhibited stronger responses to instrument sounds are 

plotted in blue (negative t-values), p < 0.005, 22 voxel cluster threshold, FWE p < .05, adjusted 

for autocorrelation among neighboring voxels. 

  

                                                Instrument > Speech Speech > Instrument



 

Table 2 Peak Univariate Activation for the Contrast Speech > Instrument 

Description t Voxels (n) MNI Coordinates  
(X, Y, Z) 

Instrument    

R. Superior Temporal Gyrus –6.59 39 49,–22,9 

Speech    

L. Middle Temporal Gyrus 5.37 57 –64,–21,–5 

R. Middle Temporal Gyrus 5.42 53 69,–12,–4 

All clusters significant at uncorrected p < 0.005, with a 22 voxel cluster threshold, FWE p < .05, 
adjusted for autocorrelation among neighboring voxels. 
 

3.5 The Influence of Musical Training and Screening Task Performance 

 Comparable identification rates were observed among the musical instruments and 

speakers during the screening phase, which indicates a similar level of difficulty for listeners in 

perceiving both sets of sound sources (see section 3.1). However, our participant population did 

vary with respect to musical experience. Therefore, it is possible that participants with more 

musical training were more familiar with the instrument stimuli at baseline. Musical training has 

also been linked to general auditory perception advantages that could have influenced these 

results (Chartrand and Belin, 2006; Zendel and Alain, 2012). To examine the possible influence 

of musical training on familiarization and screening performance we calculated Pearson’s 

product moment correlations between the participant’s musical training subscale of the 

Goldsmith’s Musical Sophistication Index (Gold-MSI; Müllensiefen et al., 2014) and their 

overall task accuracy at screening as well as their accuracy on the subset of sounds within each 

stimulus category. These analyses were conducted both for initial task performance and when 



participants reached the high criterion needed to proceed to the fMRI session (four participants 

needed to repeat portions of the screening task to reach criterion. See section 2.3). 

 This analysis revealed that musical training did not correlate with identification 

performance overall at screening, but we did observe a significant positive correlation between 

musical training and initial identification performance on musical instrument sounds (r = 0.49, p 

= 0.04). However, this relationship was not observed when participants eventually reached 

criterion (p = 0.19), suggesting that, despite some initial differences in familiarity with the 

instrument stimuli, all participants were able to achieve very accurate identification performance 

before scanning. No other significant correlations between behavioral performance and musical 

training were observed. 

 Next we examined whether the accuracy with which we were able to decode any of the 

sound representations from participants’ fMRI responses (suggesting more robust neural 

representations for those sounds) or the strength of the univariate results might have related to 

musical training or screening performance. A significant positive correlation was observed only 

between the participants’ maximum speech decoding accuracy rates and their scores on the 

musical training subscale of the Gold-MSI (r = 0.56, p = 0.02). No significant correlation with 

musical training was observed for musical instrument decoding or any other decoding outcome. 

We also re-examined the univariate analysis with musical training statistically controlled as a 

covariate, but this did not change the pattern of results or conclusions regarding music and 

speech activation.  

 Finally, no significant correlation was observed between participants’ overall 

identification accuracy at screening (at criterion) and any of the decoding analyses nor did we 

observe any significant correlations between accuracy rates for just the instrument or speech 



stimuli at screening and their respective within-category decoding analyses. Again, we also re-

examined the univariate analysis and statistically controlled for these behavioral measures (as a 

covariates), but this also did not change the pattern of music and speech activation that we 

observed. We do note that initial overall screening task performance correlated negatively with 

maximum auditory localizer decoding (r = –0.60, p = 0.009), although this result is somewhat 

difficult to interpret as it suggests that better screening performance was associated with worse 

localizer decoding.  

 

4. Discussion 

 Our results provide nuanced insight into whether separate or overlapping regions of 

cortex represent different individual sound sources that are important to human listeners. 

Individual sound sources from different categories (conspecific voices and musical instruments) 

were represented in largely separable regions of the superior temporal lobes, with just one voxel 

of overlap between categories. Decoding a stimulus’ superordinate category (“music” or 

“speech”) was more accurate and involved a larger area of superior temporal lobes. However, 

these representations were all couched within what appears to be a more general acoustic 

processing region that represents (at the very least) different aspects of the frequency spectrum.  

 Our tokens were selected so as to naturally vary in ways that facilitate natural speaker 

and instrument identification. Thus, our decoding results encompass acoustic feature differences 

within and between these categories and appear to reflect the brain’s sensitivity to these 

dimensions. However, the minimal overlap between these categories suggests that early auditory 

areas (as defined by our localizer), which track these features, may be tuned to the acoustic 

properties specific to recognizing sound sources within each category. Thus, more work is 



needed to determine whether the separate representations observed within these (localizer 

defined) auditory areas are a consequence of category-specific tuning to acoustic features among 

subsets of neurons within a sensory processing region (similar to Riesenhuber and Poggio, 

2002), or if our results follow from acoustic feature differences inherent in our stimuli (similar to 

Giordano et al., 2014). Given the design of this study and stimulus set, we cannot rule out the 

latter possibility.  

 The spatial constraints of fMRI should be kept in mind when interpreting these overlap 

results. That is, “overlap” in a given region could be the result of separate but neighboring 

processes whose neurons overlap geographically within the space of voxel but do not interact 

functionally (e.g., Peretz et al., 2015). In this case there may be separate category specific and 

acoustic processes that occupy the same cortical region identified in our analyses, which are 

engaged to perform the different operations that we investigated. Perhaps these nuances can be 

explored by future work employing methods that are able to more finely decompose the neural 

responses within these areas (Norman-Haignere et al., 2015). Nevertheless, the pattern of overlap 

we observed is consistent with the idea that the distinct neural regions involved in processing 

speaker and timbre identity may be based on distinctions among more basic acoustic features 

processed by the brain.  

Our speaker decoding results differ from some decoding analyses that identified larger 

portions of temporal cortex (Bonte et al., 2014; Formisano et al., 2008), but align more with 

other searchlight decoding results for conspecific voices (Hasan et al., 2016). This discrepancy 

suggests that speaker decoding may be based on a more distributed network of voxels than a 

given searchlight in this study might have had access to. Previous speaker decoding results have 

also used smaller voxel sizes (Formisano et al., 2008), suggesting that if the searchlight had 



access to neural responses at a finer spatial resolution, speaker decoding might have been more 

accurate. Our speaker decoding results overlapped completely with our acoustic localizer and 

may have also been influenced by inherent differences in fundamental frequency, which is a 

strong cue for speaker identification (Creel and Bregman, 2011). Indeed, other studies of pitch 

processing implicate a similar region of auditory cortex (Penagos et al., 2004; Patterson et al., 

2002).  

The decoding of individual instruments from neural responses in fMRI has (to our 

knowledge) not been previously demonstrated, but the regions involved in instrument decoding 

were similar to previous results of studies that manipulated timbre features (Menon et al., 2002) 

or employed diverse stimulus sets involving changes in instrument timbre (Angulo-Perkins et al, 

2014; Leaver and Rauschecker, 2010; Norman-Haignere et al., 2015). Taken together, these 

findings implicate the posterior and anterior temporal lobes, although our instrument decoding 

results largely overlapped with areas involved in decoding simple stimuli expressing low-level 

acoustic differences. This suggests that the neural representations of instruments that the 

classifier could discern may largely be based on acoustic differences, as others have suggested 

(Giordano et al., 2014). Interestingly, the decoding results obtained in our study echo findings 

from studies of timbre imagery (Halpern et al., 2004), which found that imagined timbres 

activate primary auditory cortex and posterior temporal lobes. Because imagery is not based on 

acoustic stimulation, this suggests that the representations of musical instruments we decoded in 

the posterior temporal lobes may relate to the same representations involved in timbre imagery. 

However, further work is needed to disentangle mental representations of instrument timbres and 

their perceptual or acoustic qualities. 



We observed accurate category-level decoding that distinguished speech and musical 

sounds throughout the temporal lobes. This aligns with previous findings of both highly 

controlled exemplars of different categories (Staeren et al., 2009) and also with studies of diverse 

speech and non-speech sounds (Lee et al., 2015; Rogalsky et al., 2011). The between-category 

decoding results in the temporal lobes might have been partially related to the univariate 

differences in activation we observed between these categories, similar to previous studies 

identifying speech- (Overath et al., 2015) and music-specific regions of activation (Rogalsky et 

al., 2011). Taking our decoding and univariate results together with other findings of non-overlap 

between music and language (Fedorenko et al., 2012; Norman-Haignere et al., 2015; Rogalsky et 

al., 2011), it appears that speech and music sound sources are largely separable in their patterns 

of neural activation. Moreover, our tokens were simple, temporally limited examples of these 

sound sources (just 230 ms long), which presumably do not engage more complex structural or 

syntactic cognitive operations relevant to music or speech. Thus, these data suggest that the 

processing of music and speech are separable even in very early stages of cortical processing, 

when the auditory system is identifying sound sources and processing acoustic cues, prior to 

more cognitively complex linguistic or music functions.  

It is notable that we were able to achieve reliable decoding of the auditory localizer 

stimuli despite having just three runs for stimulus presentation, which constituted a more limited 

set of training data than the searchlights in the main study. This could be due to both the simple 

nature of the stimuli and our use of ISSS (Schwarzbauer et al., 2006) which likely improved the 

temporal signal-to-noise ratio in our analyses (Murphy et al., 2007; Peelle, 2014). We note 

however, that we did not attempt to specifically delineate different tonotopic axes, which likely 

would require more data (cf. Humpheries et al., 2010). Rather, our aim was simply to identify 



regions which might be involved in simple auditory processing operations. Nonetheless, our 

results suggest that ISSS may be an effective and efficient way to probe such low-level auditory 

processes in future work. 

Finally, we examined the relationship between our fMRI results and musical training as 

well as behavioral identification accuracy for the stimuli as assessed at screening. Musical 

training was associated with a benefit to initial screening performance for instruments (only). 

However, four participants repeated the screening task and this extra exposure appears to have 

overcome any potential differences in familiarity associated with musical training. Indeed, all 

participants reached the high accuracy criterion we set in order to proceed to the scanning 

session (> 88 % accuracy overall) and, at criterion, there was no correlation between musical 

training and task performance. This is therefore unlikely to have had a substantial influence on 

our fMRI results, since musical training correlated not with musical instrument decoding 

accuracy (where experience might be hypothesized to strengthen neural representations), but 

with speaker decoding accuracy and did not influence the music and speech findings in the 

univariate analysis. When taken with the similarities between the speaker decoding cluster and 

classic pitch processing regions, this suggests that musical training may be related to the degree 

of reliance on particular acoustic cues (e.g., pitch) for learning and representing individual 

speakers. 

However, the influence of the individual musical training factors and behavioral 

correlates in these results are tentative and should be more thoroughly explored by future work 

for a number of reasons. First, our participant sample was small relative to studies of musical 

training effects and likely does not fully represent the spectrum of musical training necessary to 

make strong conclusions about the relationship between musical experience and these auditory 



processes. Second, we required a high level of behavioral performance in order to proceed to the 

fMRI session. This was to in order to ensure that participants could indeed perceptually 

discriminate the acoustic qualities of the stimuli, which would in turn indicate some level of 

separability in participants’ auditory responses that the classification analysis might detect. 

However, this may have imposed a range restriction on the behavioral screening performance 

measures. Thus, follow up work involving a greater number of participants with a wider range of 

musical ability and a larger, more difficult stimulus set would allow for a more nuanced and in-

depth examination of the topics explored in the correlation analyses. 

It is also worth noting two more general limitations of our design and how they are 

unlikely to influence our findings. First, we used a relatively short trial length of 8 seconds to 

maximize the number of trials for training and testing the classifier. Such event-related fMRI 

designs create the potential for BOLD activation from a previous trial to extend into a 

subsequent trial. However, the order of stimuli in each list was randomized and no individual 

sound source was played on any two consecutive trials so this could not have favored any 

particular sound or classification in our results. The second potential source of noise is the T1-

signal decay artifact from the ISSS sequence that we observed on the first volume after the silent 

TR. A visualization of this issue is shown in Supplementary Figure 1 where it can be seen that 

TRs 2 and 3 were unaffected. Given that this artifact was easily managed by removing the first 

volume in each trial, we view this as an acceptable shortcoming given that ISSS allowed for 

sounds to be presented in quiet, while increasing the temporal signal-to-noise ratio of the data. 

Moreover, these issues do not confound our results because they were either present on all trials 

(T1 decay) or were randomly distributed across them (trial order). Finally, to further guard 



against noise from spuriously influencing our results, classification was assessed using 

empirically derived chance distributions based on null permuted data sets (Stelzer et al., 2013). 

The present study set out to probe whether the brain represents sound sources within and 

between different categories using overlapping or separable neural substrates. We found that the 

voices of conspecifics and the sounds of different musical instruments were successfully decoded 

from other sounds from the same category in separable regions of superior temporal cortex in 

and around primary auditory cortex. Decoding sound category membership (speaker or 

instrument) was more accurate and involved a more extensive portion of the temporal lobes. 

Importantly, the results of an auditory localizer that used simple, acoustically separable stimuli 

indicated that most of the decoding we observed occurred in regions that are also involved in 

representing simple acoustic differences. The results we report here help fill a critical gap in our 

understanding of how human listeners so efficiently identify the sounds in their auditory 

environment, which in turn informs later, downstream processes, such as auditory scene analysis, 

as well as speech and music perception. This investigation and future studies can guide the 

development of automated sound source identification algorithms and assistive therapies.  
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